Questo blog non intende assolutamente essere un esempio di didattica della matematica per la scuola secondaria di 1°: come dice il titolo si tratta di una sintesi di concetti matematici con esercizi. Chi vuole altro si rivolga altrove.

Addizione e sottrazione in N

Se sommiamo due numeri appartenenti ad N il totale sarà un altro numero ancora appartenente a N: possiamo quindi dire che l’addizione è un’operazione interna all’insieme N oppure che l’insieme N è chiuso rispetto all’addizione.
L’addizione gode delle seguenti proprietà, che ci aiutano in molti casi a velocizzare e semplificare i calcoli:
·        Commutativa: la somma di due o più addendi non cambia cambiando l’ordine degli addendi. Possiamo anche dire:
" a,b є N (leggiamo “Per qualunque numero a e b appartenente ad N”)
a + b = b + a
·        Associativa: la somma di 3 o più addendi non cambia associando a 2 o più addendi la loro somma. Possiamo anche dire:
" a,b, c є N (leggiamo “Per qualunque numero a, b, c appartenente ad N”)
a + b + c = a + (b + c) = (a + b) + c
·        Dissociativa: la somma di 2 o più addendi non cambia se scomponiamo un addendo in altri la cui somma sia uguale all’addendo stesso. Possiamo anche dire:
" a,b, c, d є N (leggiamo “Per qualunque numero a, b, c, d appartenente ad N”)
a + b = a + (c + d)          con c + d = b

Se eseguiamo una sottrazione tra due numeri appartenenti ad N, vediamo che la differenza è un numero appartenente ad N solo se il minuendo è maggiore o uguale al sottraendo. Se il minuendo è minore del sottraendo, la differenza non è in N: possiamo dunque dire che la sottrazione non è un’operazione interna all’insieme N oppure che l’insieme N è aperto rispetto alla sottrazione.
La sottrazione gode della proprietà:
·        Invariantiva: la differenza tra due numeri non cambia se si aggiunge o si sottrae lo stesso numero sia al minuendo che al sottraendo. Possiamo anche dire:
" a,b, c є N (leggiamo “Per qualunque numero a, b, c appartenente ad N”)
a – b = (a + c) – (b + c)
a – b = (a – c) – (b – c)

Per eseguire addizioni e sottrazioni in colonna occorre scrivere nella stessa colonna le unità dello stesso ordine sia intere che decimali, pareggiando le cifre decimali considerando come decimali anche i numeri interi.
Si inizia a sommare o sottrarre dalla colonna più a destra e nel risultato la virgola sarà sotto alle altre virgole.
Es.: 453 + 22, 13 + 3,7
Es.: 8456 – 318,279
Abbiamo visto che nella sottrazione, se il minuendo è minore del sottraendo, non è possibile eseguire l’operazione in N. E’ quindi necessario allargare l’ambito numerico considerando non solo i numeri interi positivi, ma introducendo anche i numeri interi negativi.
N+ + N-  formano l’insieme dei numeri interi relativi, detto insieme Z.

ESERCIZI

1.      L’addizione è un’operazione interna all’insieme N?
2.      La sottrazione è un’operazione interna all’insieme N?
3.      Qual è l’insieme indicato dalla lettera Z?
4.      Quali proprietà trovi applicate nelle seguenti uguaglianze?
·        8 + 7 + 2 = 8 + 2 + 7
·        38 + 12 + 5 = 30 + 8 + 12 + 5
·        30 + 6 + 9 = 36 + 9
·        36 – 7 = (36 – 6) – (7 – 6)
·        5 + 7 + 8 + 2 = 12 + 10
·        6 + 3 + 4 = 6 + 4 + 3
·        23 + 16 + 14 = 20 + 10 + 10 + 6 + 4 + 3

5.      Esegui queste addizioni applicando le tre proprietà come vedi nell’esempio:
·        32 + 15 + 18 =
39 + 16 + 11
43 + 8 + 27
6.      Esegui queste sottrazioni applicando la proprietà invariantiva come vedi nell’esempio:
·        38 - 15 =
35 - 23
68 – 22
64 - 36
7.      Metti in colonna e scrivi il risultato
72, 154 + 7,003 + 3, 519
61,84 + 1,5 + 2, 88 + 78,62
3860,47 – 317,31

Commenti (da Net Parade e da Facebook)

bravi!!!!

Molto utile! Grazie
ottimo insegnante ottimo lavoro complimenti

Un sito chiaro che spiega la matematica come si farebbe ai bambini (la semplicità è sempre efficace per fare apprendere concetti che sembrano astratti anche agli adulti). Il m.c.m. spiegato in quel modo è di una semplicità sconcertante e di immediata comprensione. BRAVI!!!

Non sono una docente di matematica, insegno sostegno nella s.sec.di 1° e questo sito è "oro" per chi fa il nostro lavoro. Grazie!:)

Una presentazione chiara ed efficace che può aiutare alunni e docenti. Bravi!
Luisa

Sono un alunno delle medie e vengo spesso a visitare questo sito per ripassare ed esercitarmi.
Luigi

Blog ad uso non solo degli studenti con spegazioni chiare ed efficaci ma anche per i docenti con tanti utilissimi spunti. L'ho condiviso sulla mia pagina e su Google+.
Sonia

Ottimo sito aiuta molto gli studenti.
Luigi

Siete un valido aiuto per i genitori che aiutano i figli e, purtroppo devono sostituire la spiegazione inesistente di qualche insegnante di matematica svogliato. Grazie.

Utile e chiaro. Complimenti!

Ottimo e utilissimo sito.

E' stato il primo sito chiaro e immediatamente utile.
DOPO ANNI DI SCUOLA FINALMENTE HO CAPITO IL SENSO DI:M.C.M. e m.c.m. !! Vi ho conosciuto oggi e siete diventati i miei migliori amici... Grazie per il Vostro impegno e competenza. Essere chiari e semplici non è da tutti, ciao da Luca