mercoledì 4 settembre 2013

L'area dei poligoni regolari

Sappiamo che ogni poligono regolare può essere diviso in tanti triangoli congruenti quanti sono i lati del poligono (un pentagono in 5 triangoli, un esagono in 6 e così via).
La base di ognuno di questi triangoli coincide con il lato del poligono mentre l’altezza è detta  apotema (a).

Consideriamo un poligono regolare, ad esempio un quadrato, con il lato di 4 cm e misuriamo la sua apotema. Otteniamo a = 2 cm. Dividiamo la misura dell’apotema per il lato 2 : 4 = 0,5

Vediamo poi che un quadrato con il lato di 5 cm ha l’apotema lunga 2,5 cm. Dividiamo la misura dell’apotema per il lato 2,5: 5 = 0,5

Vediamo anche un quadrato con il lato di 6 cm ha l’apotema lunga 3 cm. Dividiamo la misura dell’apotema per il lato 3 : 6 = 0,5

C’è un rapporto costante tra la misura dell’apotema e quella del lato del quadrato.  Provando anche con altri poligoni regolari constateremo sempre un rapporto costante (dipendente dal numero dei lati del poligono) tra la misura dell’apotema e quella del lato. Possiamo indicare questa costante con f.
Ecco le costanti di alcuni poligoni regolari, arrotondate a tre cifre decimali (quella del quadrato è esatta):
POLIGONO
COSTANTE
Triangolo equilatero
f = 0,289
Quadrato
f = 0,5
Pentagono regolare
f = 0,688
Esagono regolare
f = 0,866
Ettagono regolare
f = 1,038
Ottagono regolare
f = 1,207
Ennagono regolare
f = 1,374
Decagono regolare
f = 1,539
Dodecagono regolare
f = 1,866

Di conseguenza, conoscendo la misura del lato del poligono si può calcolare anche l’apotema:
a = l x f
Conoscendo l’apotema si può calcolare la misura del lato
l = a/f

Vediamo ora come si può calcolare l’area di un poligono regolare.
Ricordando che un poligono regolare di n lati si può scomporre in n triangoli congruenti, per calcolare l’area sarà sufficiente calcolare l’area di uno dei triangoli e moltiplicare il risultato per n (nel pentagono regolare l’area di un triangolo x 5, nell’esagono regolare l’area di un triangolo per 6, ecc.). Vediamo un esempio con l’ettagono regolare:

Constatiamo come 7 x l corrisponda al perimetro dell’ettagono, quindi la formula può diventare valida per ogni poligono regolare:

da cui possiamo ricavare le formule inverse

p = A x 2/a
a = A x 2/p


ESERCIZI

·        Completa la seguente tabella
poligono
lato
apotema
perimetro
area
Pentagono regolare


60 cm

Esagono regolare

34,64 cm


Ettagono regolare
6 dm



Decagono regolare


60 m


·        Un pentagono regolare ha l’apotema di 3,784 m. Calcola la sua area.
·        Un esagono regolare ha il perimetro di 49,2 dm. Quanto misura la sua superficie?
·        Un ettagono regolare ha l’area di 59,64 m2 e l’apotema misura 4,26 m. Calcola la misura di un suo lato.
·        Un ottagono regolare ha il lato di 50 cm. Calcola l’altezza di un rettangolo equivalente all’ottagono ed avente la base di 142 cm.

·        I seguenti due decagoni regolari hanno i lati, paralleli, lunghi rispettivamente 30 cm e 15 cm. Calcola l’area della parte colorata.

Commenti (da Net Parade e da Facebook)

ottimo insegnante ottimo lavoro complimenti

Un sito chiaro che spiega la matematica come si farebbe ai bambini (la semplicità è sempre efficace per fare apprendere concetti che sembrano astratti anche agli adulti). Il m.c.m. spiegato in quel modo è di una semplicità sconcertante e di immediata comprensione. BRAVI!!!

Non sono una docente di matematica, insegno sostegno nella s.sec.di 1° e questo sito è "oro" per chi fa il nostro lavoro. Grazie!:)

Una presentazione chiara ed efficace che può aiutare alunni e docenti. Bravi!
Luisa

Sono un alunno delle medie e vengo spesso a visitare questo sito per ripassare ed esercitarmi.
Luigi

Blog ad uso non solo degli studenti con spegazioni chiare ed efficaci ma anche per i docenti con tanti utilissimi spunti. L'ho condiviso sulla mia pagina e su Google+.
Sonia

Ottimo sito aiuta molto gli studenti.
Luigi

Siete un valido aiuto per i genitori che aiutano i figli e, purtroppo devono sostituire la spiegazione inesistente di qualche insegnante di matematica svogliato. Grazie.

Utile e chiaro. Complimenti!

Ottimo e utilissimo sito.

E' stato il primo sito chiaro e immediatamente utile.
DOPO ANNI DI SCUOLA FINALMENTE HO CAPITO IL SENSO DI:M.C.M. e m.c.m. !! Vi ho conosciuto oggi e siete diventati i miei migliori amici... Grazie per il Vostro impegno e competenza. Essere chiari e semplici non è da tutti, ciao da Luca