Pagine

Semirette e segmenti

Per questa lezione consiglio il seguente percorso:

1) leggi questo post
2) esercitati con Genially (lo trovi al termine delle spiegazioni)
3) allenati svolgendo esercizi con i Moduli di Google (fai clic su questo link)
4) verifica il tuo apprendimento on line su questo blog (vedi al termine del post) oppure a questo link
5) Se preferisci puoi svolgere gli esercizi in forma cartacea e controllare le tue risposte con le soluzioni proposte

Che cos’è una semiretta?
Per fartene un’idea immagina una strada che non ha inizio né fine, una strada infinita. Noi ci troviamo su un punto di questa strada e possiamo quindi decidere di percorrerla in un verso o nell’altro: in ognuno dei due casi partiamo dal punto stabilito e possiamo proseguire all’infinito.
Nella realtà concreta però non esiste la semiretta, è un’astrazione geometrica.
Prendiamo una retta r, stabiliamo su questa un punto O.


Il punto O divide la retta in due parti r1 e r2, ciascuna delle quali ha origine dal punto O e continua all’infinito. Queste due parti sono le semirette. Possiamo quindi dire che un punto su una retta individua due semirette, che possiamo così definire: “la semiretta è una parte della retta che ha un punto di origine ed è infinita”.

Consideriamo ora la stessa strada  immaginaria ed infinita di prima. Su questa strada noi però possiamo muoverci solo tra due punti, quindi il nostro percorso ha un inizio ed una fine.
Vediamo la situazione geometrica con una rappresentazione grafica:

Notiamo che, individuando 2 punti sulla retta, questa resta divisa in 3 parti, le semirette r1 e r2 che già conosciamo e la parte di retta compresa tra i punti A e B. Questa parte di retta si chiama segmento e si indica

Per ragioni di tastiera d’ora in avanti indicheremo i segmenti senza il trattino sopra, solo col nome dei punti che lo delimitano: segmento AB. Possiamo quindi definire il segmento: “è una parte di retta delimitata da 2 punti. Ha un inizio ed una fine.”

Due segmenti si dicono consecutivi quando hanno in comune solo un punto.

Due segmenti sono invece adiacenti se, oltre ad essere consecutivi, appartengono alla stessa retta.


Il confronto di segmenti si opera mediante sovrapposizione, facendo coincidere almeno un estremo.
Dal confronto possono risultare queste situazioni:
·        I due segmenti hanno la stessa lunghezza: sono congruenti

Possiamo dire che AB @ CD (il segmento AB è congruente al segmento CD
Il simbolo º significa “coincide”
Se due segmenti non sono congruenti, uno sarà maggiore e l’altro minore

In questo caso AB > CD e quindi CD < AB

Proviamo ora a trovare il segmento somma, disegnando entrambi i segmenti in modo che siano adiacenti.

Il segmento somma è il segmento AD. Infatti AB + CD = AD

Troviamo infine il segmento differenza, sovrapponendo i due segmenti in modo che coincida un estremo.

Il segmento differenza sarà il segmento DB. Infatti AB – CD = DB

Puoi seguire questa lezione ed esercitarti anche on line, con Genially.




Ecco una serie di esercizi che puoi svolgere on line seguiti da esercizi in forma cartacea.




ESERCIZI

1.      Come sono tra loro questi segmenti?
2.      Per quale dei due esempi è vera la frase: AB e CD sono segmenti adiacenti

3.      Prova  a dare una definizione di semiretta
4.      Per due punti quanti segmenti possono passare?
5.      Osserva e confronta

AB …….. BC
AC …….. AB

Quanti segmenti vedi? Colorali di verde.
Quante semirette vedi? Colorale di rosso
6.     

Quale affermazione è vera?
AB > CD
AB @ CD
AB < CD