Caratteristiche dei triangoli e criteri di congruenza

Consideriamo alcune caratteristiche del triangolo isoscele:
·      Gli angoli alla base sono congruenti
·      L’altezza, l’asse, la mediana e la bisettrice relativi alla base coincidono in un unico segmento
·      Ortocentro (O), circocentro (C), baricentro (B) ed incentro (I) sono punti che si trovano su questo unico segmento.
 Vediamo ora le caratteristiche del triangolo equilatero:
·      Ha i tre lati congruenti e gli angoli stessa ampiezza (60°): è quindi un poligono regolare
·      L’altezza, l’asse, la mediana e la bisettrice relativi ad un qualunque lato coincidono in un unico segmento
·      Ortocentro (O), circocentro (C), baricentro (B) ed incentro (I) coincidono in un unico punto , detto centro del triangolo equilatero.
Passiamo alle caratteristiche del triangolo rettangolo.
·      Poiché la somma degli angoli interni di un triangolo è 180° ed un angolo è retto, gli altri due angoli sono complementari, la loro somma è cioè 90°
·      Se un triangolo rettangolo ha un angolo acuto di 45° anche l’altro angolo acuto quindi sarà di 45°: il triangolo rettangolo sarà anche isoscele con i due cateti congruenti.
·      Se un triangolo rettangolo ha un angolo acuto di 30°, l’altro angolo acuto sarà di 60°: possiamo considerare questo triangolo come la metà di in triangolo equilatero che ha i lati della stessa lunghezza dell’ipotenusa. Nel triangolo equilatero l’altezza BA è anche mediana e bisettrice, quindi A è il punto medio di DC: ne deriva che il cateto AC opposto all’angolo di 30° è la metà dell’ipotenusa BC.


Sappiamo che due triangoli sono congruenti se, sovrapponendoli, coincidono perfettamente.
Esistono però dei criteri per riconoscere la congruenza tra triangoli senza la necessità di procedere a sovrapposizioni.
Il I criterio di congruenza dei triangoli afferma che due triangoli sono congruenti se hanno rispettivamente congruenti due lati e l’angolo tra essi compreso.


Il II criterio di congruenza dei triangoli afferma che due triangoli sono congruenti se hanno rispettivamente congruenti un lato ed i due angoli ad esso adiacenti.



Il III criterio di congruenza dei triangoli afferma che due triangoli sono congruenti se hanno rispettivamente congruenti i tre lati.


Ecco una serie di esercizi che puoi svolgere on line seguiti da esercizi in forma cartacea.

ESERCIZI

·    Completa le frasi relative alle caratteristiche del triangolo rettangolo
I due angoli acuti sono …………………………..
Se un angolo acuto è ampio 45°, l’altro angolo acuto misurerà …….. ° e quindi il triangolo è anche ………………………
Se un angolo acuto è ampio 30°, l’altro angolo acuto misurerà ………. ° ed il cateto opposto all'angolo di 30° ………………………………………………………………………………
·    Completa le frasi relative alle caratteristiche del triangolo isoscele
I lati obliqui sono …………………….
Gli angoli alla base sono …………………………..
L’altezza, l’asse, la mediana e la bisettrice relativi alla base …………………………………
…………………………………………………………………………………………………
Ortocentro, circocentro, baricentro ed incentro sono punti che si trovano ……………………
…………………………………………………………………………………………………

·    Completa le frasi relative alle caratteristiche del triangolo equilatero
I tre lati sono ………………………….
I tre angoli sono …………………………. e misurano ciascuno ……….. °
E’ un poligono regolare perché ……………………………………………………………
L’altezza, l’asse, la mediana e la bisettrice relativi ad un qualunque lato ……………………
…………………………………………………………………………………………………
Ortocentro, circocentro, baricentro ed incentro coincidono ………………………………, detto ………… del triangolo equilatero.

·    Considera le misure conosciute di questi due triangoli e spiega se sono congruenti ed in base a quale criterio:
triangolo ABC: AB = 8 cm – BC = 10 cm - angolo in B = 52°
triangolo FGH: FG = 8 cm – GH = 10 cm - angolo in G = 52°

·    Considera le misure conosciute di questi due triangoli rettangoli e spiega se sono congruenti ed in base a quale criterio:
triangolo ABC: cateto AB = 12 cm – cateto BC = 15 cm
triangolo DEF: cateto DE = 12  cm – cateto EF = 15 cm

·    Considera le misure conosciute di questi due triangoli e spiega se sono congruenti ed in base a quale criterio:
triangolo ABC: AB = 16 cm – BC = 21 cm - AC = 29 cm
triangolo CDE: CD = 16 cm – DE = 21 cm - CE = 29 cm

·    Di un triangolo ottusangolo ABC con BH altezza relativa al lato AC, conosciamo questi dati:
BC = 20 cm
AB = 6,2 cm
AH = HC – 15
P = 50,2 cm
b =  125 °
g = 10°

a)      Trova l’ampiezza dell’angolo a
b)      Trova l’ampiezza degli angoli interni del triangolo HBA e del triangolo BCH
c)      Che tipo di triangolo è HBA?
d)      Calcola il perimetro del triangolo HBA e del triangolo BCH

Visualizza, scarica e stampa gli esercizi
Visualizza, scarica e stampa le soluzioni

Commenti (da Net Parade e da Facebook)

bravi!!!!

Molto utile! Grazie
ottimo insegnante ottimo lavoro complimenti

Un sito chiaro che spiega la matematica come si farebbe ai bambini (la semplicità è sempre efficace per fare apprendere concetti che sembrano astratti anche agli adulti). Il m.c.m. spiegato in quel modo è di una semplicità sconcertante e di immediata comprensione. BRAVI!!!

Non sono una docente di matematica, insegno sostegno nella s.sec.di 1° e questo sito è "oro" per chi fa il nostro lavoro. Grazie!:)

Una presentazione chiara ed efficace che può aiutare alunni e docenti. Bravi!
Luisa

Sono un alunno delle medie e vengo spesso a visitare questo sito per ripassare ed esercitarmi.
Luigi

Blog ad uso non solo degli studenti con spegazioni chiare ed efficaci ma anche per i docenti con tanti utilissimi spunti. L'ho condiviso sulla mia pagina e su Google+.
Sonia

Ottimo sito aiuta molto gli studenti.
Luigi

Siete un valido aiuto per i genitori che aiutano i figli e, purtroppo devono sostituire la spiegazione inesistente di qualche insegnante di matematica svogliato. Grazie.

Utile e chiaro. Complimenti!

Ottimo e utilissimo sito.

E' stato il primo sito chiaro e immediatamente utile.
DOPO ANNI DI SCUOLA FINALMENTE HO CAPITO IL SENSO DI:M.C.M. e m.c.m. !! Vi ho conosciuto oggi e siete diventati i miei migliori amici... Grazie per il Vostro impegno e competenza. Essere chiari e semplici non è da tutti, ciao da Luca