28 maggio 2025

Rapporti e proporzioni



Consideriamo questa situazione in cui ci vengono presentati due dati.
La popolazione della Campania è di 5 790 187 abitanti; la superficie della Campania è di 13 590 km2.
Possiamo mettere in relazione questi due dati, cioè rapportarli tra di loro per calcolare la densità di popolazione della Campania.
5 790 187 ab : 13 590 km2 = 426 abitanti per ogni km2
Vediamo che la ricerca del rapporto tra i due dati di partenza si è concretizzato in una divisione ed il quoziente tra i due dati è il loro rapporto numerico.
Possiamo dunque generalizzare affermando che il rapporto tra due numeri a e b è il quoziente di a : b.
Il rapporto tra due numeri, ad esempio 7 e 8 può essere indicato in modo diverso:
-         con una divisione 7 : 8 (si legge “rapporto 7 a 8”)
-         con una frazione 7/8 (si legge “rapporto sette ottavi”)
-         con un numero decimale 7 : 8 = 0,875 (si legge “rapporto 0,875”)

I due numeri 7 e 8 si chiamano termini del rapporto: il primo termine prende il nome di antecedente, il secondo termine di conseguente.

Consideriamo ora questa situazione.
In una serie di tiri liberi a canestro Giorgio realizza 15 canestri in 20 tiri mentre Paolo realizza 12 canestri su 16 tiri.
Chi è stato il miglior tiratore? Non lasciamoci ingannare dal fatto che Giorgio ha fatto più canestri di Paolo, dobbiamo considerare per ogni giocatore il rapporto canestri fatti/tiri effettuati.
Per Giorgio il rapporto è 15 : 20 = 0,75
Per Paolo il rapporto è 12 : 16 = 0,75
I due rapporti sono uguali, quindi i due giocatori hanno dimostrato uguale bravura.
Possiamo dunque scrivere così
15 : 20 = 12 : 16

Abbiamo scritto un’uguaglianza fra due rapporti. Questa uguaglianza si chiama proporzione, che possiamo dunque definire come l’uguaglianza di due rapporti.
La proporzione sopra indicata si legge: 15 sta a 20 come 12 sta a 16.
Impariamo la nomenclatura corretta delle proporzioni:




-         i quattro numeri sono i termini della proporzione
-         il 1° ed il 3° numero sono gli antecedenti
-         il 2° ed il 4° numero sono i conseguenti
-         il 1° ed il 4° numero sono gli estremi
-         il 2° ed il 3° numero sono i medi

Tutte le proporzioni godono di alcune proprietà. Cominciamo ad esaminare la proprietà fondamentale.
La proprietà fondamentale delle proporzioni afferma che in ogni proporzione il prodotto dei medi è sempre uguale al prodotto degli estremi. Se la proporzione è a : b = x : y avremo che a . y = b . x.
Nella proporzione 15 : 20 = 12 : 16 avremo che 15 . 16 = 20 . 12
Questa proprietà è utile per controllare se due rapporti possono formare una proporzione.
Esempio:
I rapporti 1,5 : 0,3 e 2,5 : 0,5 possono formare una proporzione?
Moltiplichiamo gli estremi: 1,5 . 0,5 = 0,75
Moltiplichiamo i medi: 0,3 . 2,5 = 0,75
Sì, i due rapporti possono formare una proporzione.
Vediamo un altro esempio:

No, i due rapporti non formano una proporzione.

Passiamo ad esaminare un’altra proprietà, la cosiddetta proprietà dell’invertire.
La proprietà dell’invertire afferma che, in ogni proporzione, scambiando ogni antecedente con il proprio conseguente si ottiene ancora una proporzione.
Se la proporzione è a : b = c : d sarà una proporzione anche b : a = d : c.
Vediamo un esempio:
se è vero che 50 : 5 = 20 : 2 sarà anche vero che 5 : 50 = 2 : 20


Vediamo ora la proprietà del permutare.
La proprietà del permutare afferma che, in ogni proporzione, scambiando tra loro gli estremi o i medi o entrambi si ottengono altre proporzioni.
Se la proporzione è a : b = c : d saranno proporzioni anche 

Un’altra proprietà delle proporzioni è la proprietà del comporre.
La proprietà del comporre afferma che, in ogni proporzione, la somma del 1° e 2° termine sta al 1° o al 2° termine come la somma del 3° e 4° termine sta al 3° o 4° termine.
Se è vera la proporzione a : b = c : d saranno proporzioni vere anche
(a + b) : a = (c + d) : c
(a + b) : b = (c + d) : d
Vediamo un esempio numerico. Se



Possiamo controllare con la proprietà fondamentale che ciò che abbiamo ottenuto è veramente una proporzione.

Applichiamo la proprietà del comporre nel secondo modo.



Vediamo infine la proprietà dello scomporre.
La proprietà dello scomporre afferma che, in ogni proporzione che abbia gli antecedenti maggiori dei rispettivi conseguenti, la differenza tra il 1° e 2° termine sta al 1° o al 2° termine come la differenza tra il 3° e 4° termine sta al 3° o 4° termine.
Se è vera la proporzione a : b = c : d saranno proporzioni vere anche
(a - b) : a = (c - d) : c
(a - b) : b = (c - d) : d

Vediamo un esempio numerico. Se


Possiamo controllare con la proprietà fondamentale che ciò che abbiamo ottenuto è veramente una proporzione.


Applichiamo la proprietà dello scomporre nel secondo modo.


ESERCIZI
·      Quali, tra questi rapporti, possono costituire una proporzione?
12 : 3 e 14 : 2
36 : 6 e 30 : 5
200 : 20 e 30 : 3
100 : 2 e 200 : 20
·      Data la proporzione 25 : 20 = 30 : 24 rispondi alle domande:
-       Quali sono gli antecedenti?
-       Quali sono i conseguenti?
-       Quali sono gli estremi?
-       Quali sono i medi?
-       Qual è il valore del rapporto?




·      Ad ogni proporzione applica le proprietà dell’invertire, del permutare, del comporre e dello scomporre (quando possibile)


Proprietà dell’invertire
Proprietà del permutare
Proprietà del comporre
Proprietà dello scomporre
5 : 7 = 15 : 21




54 : 6 = 18 : 2




72 : 12 = 36 : 6




3 : 4 = 9 : 12






24 maggio 2025

Dai numeri razionali ai numeri irrazionali



Consideriamo gli insiemi numerici che conosciamo finora.
Abbiamo esaminato l’insieme N o insieme dei numeri naturali
{0, 1, 2, 3, 4,......}
 Abbiamo visto come l’addizione e la moltiplicazione siano operazioni interne all’insieme N mentre la sottrazione non è un’operazione interna all’insieme dei numeri naturali perché non è sempre possibile restando nell’ambito dei numeri naturali.
Per dare una risposta a qualsiasi sottrazione, i matematici hanno inventato i numeri relativi (con il segno), e cioè l’insieme Z.
{...,-4, -3, -2, -1, 0, 1, 2, 3, 4,......}
L’addizione, la sottrazione e la moltiplicazione sono operazioni interne all’insieme Z perché il risultato è sempre un numero intero relativo. La divisione, invece, non è un’operazione interna all’insieme Z perché in alcuni casi non è possibile: ad esempio (+3) : (+5) = ?
Per poter eseguire qualsiasi divisione, i matematici hanno inventato le frazioni: l’insieme Q+ o insieme dei numeri razionali.
-3/4                  +6/5              +5/2
L’insieme Q+ include sia l’insieme N che l’insieme Z.
L’addizione, la sottrazione, la moltiplicazione e la divisione sono operazioni interne all’insieme Q+ perché il risultato è sempre un numero razionale relativo.
L’estrazione di radice non è sempre un’operazione interna all’insieme Q+: se il numero di cui dobbiamo estrarre la radice quadrato è un quadrato perfetto allora l’estrazione di radice è interna a Q+.
Se invece il numero di cui vogliamo estrarre la radice quadrata non è un quadrato perfetto, sappiamo che otterremo una radice quadrata approssimata per difetto a meno di 0,1 – 0,01 – 0,001, ecc. Ad esempio la radice quadrata di 10 approssimata per difetto a meno di 0,00001 è 3,16227….. ma potremmo proseguire all’infinito ottenendo un numero decimale illimitato con cifre decimali che non si ripeteranno mai: si tratta quindi di un numero decimale illimitato non periodico. I numeri di questo tipo sono chiamati numeri irrazionali.
Per dare quindi una risposta a qualsiasi radice con radicando positivo, i matematici hanno inventato i numeri irrazionali: l’insieme I+ o insieme dei numeri irrazionali.
L’unione dell’insieme Q+ dei numeri razionali e dell’insieme I+ dei numeri irrazionali forma l’insieme R+ o insieme dei numeri reali assoluti.
L’estrazione di radice quadrata è un’operazione interna all’insieme R+.
Possiamo rappresentare graficamente in questo modo



oppure anche così



ESERCIZI

·      La sottrazione è un’operazione interna all’insieme N?
·      La sottrazione è un’operazione interna all’insieme Z?
·      Quali sono le operazioni interne all’insieme Z?
·      L’estrazione di radice quadrata è un’operazione interna all’insieme Q+?
·      In quale insieme l’estrazione di radice quadrata è un’operazione interna?
·      Qual è l’insieme formato dall’unione dei numeri razionali e dall’insieme dei numeri irrazionali?
·      Inserisci i seguenti numeri al posto corretto nel diagramma di Eulero-Venn
·      Quali tra i seguenti numeri reali assoluti sono razionali e quali irrazionali? Cerchia di blu i razionali e di rosso gli irrazionali.
 


16 maggio 2025

Radici quadrate approssimate



Esaminiamo l’estrazione della radice quadrata eseguita nel precedente post e riferita ad un numero intero che non sia un quadrato perfetto.

Abbiamo in questo caso una radice quadrata approssimata per difetto a meno di una unità.
Possiamo proseguire il calcolo della radice quadrata non fermandoci alla parte intera e raggiungendo quindi un’approssimazione più precisa.
Possiamo approssimare per difetto a meno di 0,1 (cioè a meno di un decimo), a meno di 0,01 (cioè a meno di un centesimo), a meno di 0,001 (cioè a meno di un millesimo) …..
Proviamo ad approssimare per difetto a meno di 0,1.
E’ sufficiente aggiungere due zeri all’ultimo resto e mettere la virgola nella radice e quindi si procede come già sappiamo.

Continuando e aggiungendo due zeri all’ultimo resto otterremo un’approssimazione per difetto a meno di 0,01.

Continuando e aggiungendo due zeri all’ultimo resto otterremo un’approssimazione per difetto a meno di 0,001.

In questo caso possiamo dire che:

ESERCIZI

·      Calcola la radice quadrata approssimata per difetto a meno di 0,1 dei seguenti numeri
2 937 – 10 721 – 89 759



·      Calcola la radice quadrata approssimata per difetto a meno di 0,01 dei seguenti numeri
747 – 5 721 – 55 381



·      Calcola la radice quadrata approssimata per difetto a meno di 0,001 dei seguenti numeri
135 – 451

09 maggio 2025

La radice quadrata

L’estrazione di radice è il procedimento che ci permette di trovare la base, conoscendo l’esponente ed il valore di una potenza. Si tratta quindi dell’operazione inversa rispetto all'elevamento a potenza.
Come l’elevamento a potenza può essere alla seconda, alla terza, alla quarta ……, così l’estrazione di radice può essere quadrata, cubica, ecc.
Per ora consideriamo l’estrazione di radice quadrata (per convenzione si omette l’indice 2 sopra il segno di radice)
Dovrebbe essere evidente che

Vediamo il nome dei termini di questa operazione


Possiamo dunque dire che l’estrazione della radice quadrata di un numero (radicando) consiste in un’operazione che permette di individuare un altro numero che, elevato al quadrato, dà come risultato il radicando.

I quadrati perfetti

Osserviamo alcuni casi:




I numeri per cui esiste la radice quadrata perfetta si dicono quadrati perfetti e la loro radice quadrata è esatta.

Come possiamo fare per riconoscere se un numero è un quadrato perfetto? Scomponiamo in fattori primi alcuni dei numeri che abbiamo visto o che sappiamo essere quadrati perfetti.



49
7
7
7
1








81
3
27
3
9
3
3
3
1


64
2
32
2
16
2
8
2
4
2
2
2
1












100
2
50
2
25
5
5
5
1


49 = 72
81 = 34
64 = 26
100 = 22 x 52

Ci accorgiamo che tutti questi numeri sono uguali al prodotto di tutti fattori con esponenti pari. Possiamo dunque affermare che un numero è un quadrato perfetto quando è uguale al prodotto di fattori primi tutti con esponenti pari.

I numeri non quadrati perfetti

E i numeri che non sono quadrati perfetti? Di essi non possiamo trovare la radice quadrata esatta, ma possiamo calcolare la radice quadrata approssimata per difetto o per eccesso.

Consideriamo, ad esempio, 

Qual è il numero più grande che, elevato al quadrato, ci dà un numero inferiore a 55? E’ 7 perché 72 = 49 < 55
Qual è il numero più piccolo che, elevato al quadrato, ci dà un numero superiore a 55? E’ 8 perché 82 = 64 > 55
Quindi 7 è la radice quadrata di 55 approssimata per difetto a meno di una unità, invece 8 è la radice quadrata di 55 approssimata per eccesso a meno di una unità.

Estrazione di una radice quadrata
Passiamo ora ad illustrare il procedimento per l’estrazione di una radice quadrata.
Estraiamo la radice quadrata di 33 856.


Estraiamo ora la radice quadrata di 651 432


In questo caso, poiché l’ultimo resto è diverso da zero, non abbiamo una radice quadrata esatta, bensì una radice quadrata approssimata per difetto a meno di una unità.

ESERCIZI

·      Verifica, con la scomposizione in fattori primi, se i seguenti numeri sono quadrati perfetti.
1 440 – 1 444 - 3 240 –  5 184 - 12 348 – 14 400

·      Calcola la radice quadrata esatta dei seguenti numeri:
2 601 – 11 025 – 158 404

·      Calcola la radice quadrata approssimata per difetto a meno di una unità dei seguenti numeri:
1029 – 11 235 – 516 986


Visualizza, scarica e stampa gli esercizi
Visualizza, scarica e stampa le soluzioni

03 maggio 2025

Espressioni con i numeri decimali



Per eseguire operazioni (e quindi anche espressioni) con i numeri decimali, possiamo scegliere di eseguire i calcoli con i numeri decimali seguendo le regole che già conosciamo. Ad esempio
(1,04 + 5,08 – 5)2 : 1,12
1,122 : 1,12 = 1,12
oppure possiamo trasformare i numeri decimali nella loro frazione generatrice ed effettuare i calcoli con le frazioni. Questa seconda possibilità è quella che dobbiamo necessariamente seguire se i calcoli comprendono numeri decimali illimitati periodici.
Esempio:



ESERCIZI










Commenti (da Net Parade e da Facebook)

bravi!!!!

Molto utile! Grazie
ottimo insegnante ottimo lavoro complimenti

Un sito chiaro che spiega la matematica come si farebbe ai bambini (la semplicità è sempre efficace per fare apprendere concetti che sembrano astratti anche agli adulti). Il m.c.m. spiegato in quel modo è di una semplicità sconcertante e di immediata comprensione. BRAVI!!!

Non sono una docente di matematica, insegno sostegno nella s.sec.di 1° e questo sito è "oro" per chi fa il nostro lavoro. Grazie!:)

Una presentazione chiara ed efficace che può aiutare alunni e docenti. Bravi!
Luisa

Sono un alunno delle medie e vengo spesso a visitare questo sito per ripassare ed esercitarmi.
Luigi

Blog ad uso non solo degli studenti con spegazioni chiare ed efficaci ma anche per i docenti con tanti utilissimi spunti. L'ho condiviso sulla mia pagina e su Google+.
Sonia

Ottimo sito aiuta molto gli studenti.
Luigi

Siete un valido aiuto per i genitori che aiutano i figli e, purtroppo devono sostituire la spiegazione inesistente di qualche insegnante di matematica svogliato. Grazie.

Utile e chiaro. Complimenti!

Ottimo e utilissimo sito.

E' stato il primo sito chiaro e immediatamente utile.
DOPO ANNI DI SCUOLA FINALMENTE HO CAPITO IL SENSO DI:M.C.M. e m.c.m. !! Vi ho conosciuto oggi e siete diventati i miei migliori amici... Grazie per il Vostro impegno e competenza. Essere chiari e semplici non è da tutti, ciao da Luca